One Computational Innovation Transition-Based Recovery Policy for Flexible Manufacturing Systems Using Petri nets

Author:

Pan Yen-LiangORCID

Abstract

In the third and fourth industrial revolutions, smart or artificial intelligence flexible manufacturing systems (FMS) seem to be the key machine equipment for capacity of factory production. However, deadlocks could hence appear due to resources competition between robots. Therefore, how to prevent deadlocks of FMS occurring is a very important and hot issue. Based on Petri nets (PN) theory, in existing literature almost all research adopts control places as their deadlock prevention mean. However, under this strategy the real optimal reachable markings are not achieved even if they claimed that their control policy is maximally permissive. Accordingly, in this paper, the author propose one novel transition-based control policy to solve the deadlock problem of FMS. The proposed control policy could also be viewed as deadlock recovery since it can recover all initial deadlock and quasi-deadlock markings. Furthermore, control transitions can be calculated and obtained once the proposed three-dimension matrix, called generating and comparing aiding matrix (GCAM) in this paper, is built. Finally, an iteration method is used until all deadlock markings become live ones. Experimental results reveal that our control policy seems still the best one among all existing methods in the literature regardless of whether these methods belong to places or transitions based.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference64 articles.

1. System Deadlocks

2. Introduction to Automata Theory, Languages, and Computation;Hopcroft,1979

3. Deadlock avoidance in flexible manufacturing systems using finite automata

4. Queueing Systems, Vol. 1: Theory;Kleinrock,1975

5. Fundamentals of Queueing Theory;Gross,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3