Abstract
Smoothing is one of the fundamental procedures in functional data analysis (FDA). The smoothing parameter λ influences data smoothness and fitting, which is governed by selecting automatic methods, namely, cross-validation (CV) and generalized cross-validation (GCV) or subjective assessment. However, previous biomechanics research has only applied subjective assessment in choosing optimal λ without using any automatic methods beforehand. None of that research demonstrated how the subjective assessment was made. Thus, the goal of this research was to apply the FDA method to smoothing and differentiating kinematic data, specifically right hip flexion/extension (F/E) angle during the American kettlebell swing (AKS) and determine the optimal λ . CV and GCV were applied prior to the subjective assessment with various values of λ together with cubic and quintic spline (B-spline) bases using the FDA approach. The selection of optimal λ was based on smoothed and well-fitted first and second derivatives. The chosen optimal λ was 1 × 10 − 12 with a quintic spline (B-spline) basis and penalized fourth-order derivative. Quintic spline is a better smoothing and differentiation method compared to cubic spline, as it does not produce zero acceleration at endpoints. CV and GCV did not give optimal λ , forcing subjective assessment to be employed instead.
Funder
Universiti Kebangsaan Malaysia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献