Applications and Limits of Time-to-Energy Mapping of Protein Crystal Diffraction Using Energy-Chirped Polychromatic XFEL Pulses

Author:

Fadini Alisia,Reiche Sven,Nass KarolORCID,van Thor Jasper J.ORCID

Abstract

A broadband energy-chirped hard X-ray pulse has been demonstrated at the SwissFEL (free electron laser) with up to 4% bandwidth. We consider the characteristic parameters for analyzing the time dependence of stationary protein diffraction with energy-chirped pulses. Depending on crystal mosaic spread, convergence, and recordable resolution, individual reflections are expected to spend at least ≈ 50 attoseconds and up to ≈ 8 femtoseconds in reflecting condition. Using parameters for a chirped XFEL pulse obtained from simulations of 4% bandwidth conditions, ray-tracing simulations have been carried out to demonstrate the temporal streaking across individual reflections and resolution ranges for protein crystal diffraction. Simulations performed at a higher chirp (10%) emphasize the importance of chirp magnitude that would allow increased observation statistics for the temporal separation of individual reflections for merging and structure determination. Finally, we consider the fundamental limitation for obtaining time-dependent observations using chirped pulse diffraction. We consider the maximum theoretical time resolution achievable to be on the order of 50–200 as from the instantaneous bandwidth of the chirped SASE pulse. We then assess the ability to propagate ultrafast optical pulses for pump-probe cross-correlation under characteristic conditions of material dispersion; in this regard, the limiting factors for time resolution scale with crystal thickness. Crystals that are below a few microns in size will be necessary for subfemtosecond time resolution.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3