Mg–Al-Layered Double Hydroxide (LDH) Modified Diatoms for Highly Efficient Removal of Congo Red from Aqueous Solution

Author:

Sriram GanesanORCID,Uthappa U. T.,Losic DusanORCID,Kigga MadhuprasadORCID,Jung Ho-Young,Kurkuri Mahaveer D.

Abstract

In this work, diatomaceous earth (DE) or diatoms are modified with Mg–Al-layered double hydroxide (DE-LDH) using the facile co-precipitation method to demonstrate their application for the removal of toxic dyes such as Congo Red (CR), which was used as a model. Field emission scanning electron microscopy (FE-SEM) characterization confirms the successful modification of diatom microcapsules structures, showing their surface decorated with LDH nano patches with sheet-like morphologies. The surface area of the DE was enhanced from 28 to 51 m2/g after modification with LDH. The adsorption studies showed that the maximum CR removal efficiency of DE and DE-LDH was ~15% and ~98%, respectively at pH 7, which is a significant improvement compared with unmodified DE. The maximum adsorption capacities of DE-LDH were improved ten times (305.8 mg/g) compared with the bare DE (23.2 mg/g), showing very high adsorption performances. The recyclability study of DE-LDH up to five cycles, after desorbing CR either by methanol or by NaOH, showed the efficient removal of the CR by up to three cycles via adsorption. The presented study suggests the promising application of DE-LDH as an effective material for application in the removal of CR from aqueous solutions for industrial wastewater treatment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3