Multiplicity Analysis of a Thermistor Problem—A Possible Explanation of Delamination Fracture

Author:

Krikkis Rizos N.1

Affiliation:

1. Institute of Thermal Research, 2 Kanigos Str, P.O. Box 106 77 Athens, Greece

Abstract

In the present study, a numerical bifurcation analysis of a PTC thermistor problem is carried out, considering a realistic heat dissipation mechanism due to conduction, nonlinear temperature-dependent natural convection, and radiation. The electric conductivity is modeled as a strongly nonlinear and smooth function of the temperature between two limiting values, based on measurements. The temperature field has been resolved for both cases were either the current or the voltage (nonlocal problem) is the controlling parameter. With the aid of an efficient continuation algorithm, multiple steady-state solutions that do not depend on the external circuit have been identified as a result of the inherent nonlinearities. The analysis reveals that the conduction–convection parameter and the type of the imposed boundary conditions have a profound effect on the solution structure and the temperature profiles. For the case of current control, depending on the boundary conditions, a complex and interesting multiplicity pattern appears either as a series of nested cusp points or as enclosed branches emanating from pitchfork bifurcation points. The stability analysis reveals that when the device edges are insulated, only the uniform solutions are stable, namely, one “cold” and one “hot”. A key feature of the “hot” state is that the corresponding temperature is proportional to the input power and its magnitude could be one or even two orders of magnitude higher than the “cold” one. Therefore, the change over from the “cold” to the “hot” state induces a thermal shock and could perhaps be the reason for the mechanical failure (delamination fracture) of PTC thermistors.

Publisher

MDPI AG

Subject

Psychiatry and Mental health

Reference55 articles.

1. Thermistors;Instrument Engineers’ Handbook, Process Measurement and Analysis,2003

2. Fraden, J. (2004). Handbook of Modern Sensors. Physics, Designs and Applications, AIP Press. [3rd ed.].

3. Webster, J.G. (1999). The Measurement, Instrumentation and Sensors Handbook, IEEE Press.

4. Investigation on Temperature-Dependent Electrical Transport Behavior of Cobalt Ferrite (CoFe2O4) for Thermistor Applications;Naik;ECS J. Solid State Sci. Technol.,2023

5. Study of Structural, Dielectric, Electrical, and Magnetic Properties of Samarium-Doped Double Perovskite Material for Thermistor Applications;Mallick;Braz. J. Phys.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3