Object Relocation Visual Tracking Based on Histogram Filter and Siamese Network in Intelligent Transportation

Author:

Zhang Jianlong,Liu Yifan,Li Qiao,He Ci,Wang BinORCID,Wang Tianhong

Abstract

Target detection and tracking algorithms are one of the key technologies in the field of autonomous driving in intelligent transportation, providing important sensing capabilities for vehicle localization and path planning. Siamese network-based trackers formulate the visual tracking mission as an image-matching process by regression and classification branches, which simplifies the network structure and improves the tracking accuracy. However, there remain many problems, as described below. (1) The lightweight neural networks decrease the feature representation ability. It is easy for the tracker to fail under the disturbing distractors (e.g., deformation and similar objects) or large changes in the viewing angle. (2) The tracker cannot adapt to variations of the object. (3) The tracker cannot reposition the object that has failed to track. To address these issues, we first propose a novel match filter arbiter based on the Euclidean distance histogram between the centers of multiple candidate objects to automatically determine whether the tracker fails. Secondly, the Hopcroft–Karp algorithm is introduced to select the winners from the dynamic template set through the backtracking process, and object relocation is achieved by comparing the Gradient Magnitude Similarity Deviation between the template and the winners. The experiments show that our method obtains better performance on several tracking benchmarks, i.e., OTB100, VOT2018, GOT-10k, and LaSOT, compared with state-of-the-art methods.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3