Kinematics Calibration and Validation Approach Using Indoor Positioning System for an Omnidirectional Mobile Robot

Author:

Popovici Alexandru-TudorORCID,Dosoftei Constantin-CatalinORCID,Budaciu CristinaORCID

Abstract

Monitoring and tracking issues related to autonomous mobile robots are currently intensively debated in order to ensure a more fluent functionality in supply chain management. The interest arises from both theoretical and practical concerns about providing accurate information about the current and past position of systems involved in the logistics chain, based on specialized sensors and Global Positioning System (GPS). The localization demands are more challenging as the need to monitor the autonomous robot’s ongoing activities is more stringent indoors and benefit from accurate motion response, which requires calibration. This practical research study proposes an extended calibration approach for improving Omnidirectional Mobile Robot (OMR) motion response in the context of mechanical build imperfections (misalignment). A precise indoor positioning system is required to obtain accurate data for calculating the calibration parameters and validating the implementation response. An ultrasound-based commercial solution was considered for tracking the OMR, but the practical observed errors of the readily available position solutions requires special processing of the raw acquired measurements. The approach uses a multilateration technique based on the point-to-point distances measured between the mobile ultrasound beacon and a current subset of fixed (reference) beacons, in order to obtain an improved position estimation characterized by a confidence coefficient. Therefore, the proposed method managed to reduce the motion error by up to seven-times. Reference trajectories were generated, and robot motion response accuracy was evaluated using a Robot Operating System (ROS) node developed in Matlab-Simulink that was wireless interconnected with the other ROS nodes hosted on the robot navigation controller.

Funder

Romanian National Authority for Scientific Research and Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3