Explainable Deep Learning-Based Feature Selection and Intrusion Detection Method on the Internet of Things

Author:

Chen Xuejiao1ORCID,Liu Minyao2ORCID,Wang Zixuan2ORCID,Wang Yun2ORCID

Affiliation:

1. School of Communications, Nanjing Vocational College of Information Technology, Nanjing 210023, China

2. School of Modern Posts, Nanjing University of Posts & Telecommunications, Nanjing 210003, China

Abstract

With the rapid advancement of the Internet of Things, network security has garnered increasing attention from researchers. Applying deep learning (DL) has significantly enhanced the performance of Network Intrusion Detection Systems (NIDSs). However, due to its complexity and “black box” problem, deploying DL-based NIDS models in practical scenarios poses several challenges, including model interpretability and being lightweight. Feature selection (FS) in DL models plays a crucial role in minimizing model parameters and decreasing computational overheads while enhancing NIDS performance. Hence, selecting effective features remains a pivotal concern for NIDSs. In light of this, this paper proposes an interpretable feature selection method for encrypted traffic intrusion detection based on SHAP and causality principles. This approach utilizes the results of model interpretation for feature selection to reduce feature count while ensuring model reliability. We evaluate and validate our proposed method on two public network traffic datasets, CICIDS2017 and NSL-KDD, employing both a CNN and a random forest (RF). Experimental results demonstrate superior performance achieved by our proposed method.

Funder

Suzhou Fundamental Research Project

Suzhou Innovative Association Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3