Author:
Huang Yeyuan,Li Ang,Xie Pinhua,Hu Zhaokun,Xu Jin,Fang Xiaoyi,Ren Hongmei,Li Xiaomei,Dang Bing
Abstract
NOX (NOX = NO + NO2) emissions measurements in Beijing are of great significance because they can aid in understanding how NOX pollution develops in mega-cities throughout China. However, NOX emissions in mega-cities are difficult to measure due to changes in wind patterns and moving sources on roads during measurement. To obtain good spatial coverage on different ring roads in Beijing over a short amount of time, two mobile differential optical absorption spectroscopy (DOAS) instruments were used to measure NOX emission flux from April 18th to 26th, 2018. In addition, a wind profile radar provided simultaneous wind field measurements for altitudes between 50 m and 1 km for each ring road measurement. We first determined NOX emission flux of different ring roads using wind field averages from measured wind data. The results showed that the NOX emission flux of Beijing’s fifth ring road, which represented the urban part, varied from (19.29 ± 5.26) × 1024 molec./s to (36.46 ± 12.86) × 1024 molec./s. On April 20th, NOX emission flux for the third ring was slightly higher than the fourth ring because the two ring roads were measured at different time periods. We then analyzed the NOX emission flux error budget and error sensitivity. The main error source was the wind field uncertainty. For some measurements, the main emission flux error source was either wind speed uncertainty or wind direction uncertainty, but not both. As Beijing’s NOX emissions came from road vehicle exhaust, we found that emission flux error had a more diverse sensitivity to wind direction uncertainty, which improved our knowledge on this topic. The NOX emission flux error sensitivity study indicated that more accurate measurements of the wind field are crucial for effective NOX emission flux measurements in Chinese mega-cities. Obtaining actual time and high resolved wind measurements is an advantage for mega-cities’ NOX emission flux measurements. The emission flux errors caused by wind direction and wind speed uncertainties were clearly distinguished. Other sensitivity studies indicated that NOX/NO2 ratio uncertainty dominated flux errors when the NOX/NO2 ratio uncertainty was >0.4. Using two mobile-DOAS and wind profile radars to measure NOx emission flux improved the quality of the emission flux measuring results. This approach could be applied to many other mega-cities in China and in others countries.
Funder
National Natural Science Foundation of China
National Key Research and Development Project of China
Science and Technology Commission of Shanghai Municipality
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献