The Design a TDCP-Smoothed GNSS/Odometer Integration Scheme with Vehicular-Motion Constraint and Robust Regression

Author:

Chiang Kai-Wei,Li Yu-HuaORCID,Hsu Li-TaORCID,Chu Feng-Yu

Abstract

Global navigation satellite system (GNSS) is widely regarded as the primary positioning solution for intelligent transport system (ITS) applications. However, its performance could degrade, due to signal outages and faulty-signal contamination, including multipath and non-line-of-sight reception. Considering the limitation of the performance and computation loads in mass-produced automotive products, this research investigates the methods for enhancing GNSS-based solutions without significantly increasing the cost for vehicular navigation system. In this study, the measurement technique of the odometer in modern vehicle designs is selected to integrate the GNSS information, without using an inertial navigation system. Three techniques are implemented to improve positioning accuracy; (a) Time-differenced carrier phase (TDCP) based filter: A state-augmented extended Kalman filter is designed to incorporate TDCP measurements for maximizing the effectiveness of phase-smoothing; (b) odometer-aided constraints: The aiding measurement from odometer utilizing forward speed with the lateral constraint enhances the state estimation; the information based on vehicular motion, comprising the zero-velocity constraint, fault detection and exclusion, and dead reckoning, maintains the stability of the positioning solution; (c) robust regression: A weighted-least-square based robust regression as a measurement-quality assessment is applied to adjust the weightings of the measurements adaptively. Experimental results in a GNSS-challenging environment indicate that, based on the single-point-positioning mode with an automotive-grade receiver, the combination of the proposed methods presented a root-mean-square error of 2.51 m, 3.63 m, 1.63 m, and 1.95 m for the horizontal, vertical, forward, and lateral directions, with improvements of 35.1%, 49.6%, 45.3%, and 21.1%, respectively. The statistical analysis exhibits 97.3% state estimation result in the horizontal direction for the percentage of epochs that had errors of less than 5 m, presenting that after the intervention of proposed methods, the positioning performance can fulfill the requirements for road level applications.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Optimal Doppler-aided smoothing strategy for GNSS navigation

2. Position and velocity reliability testing in degraded GPS signal environments

3. GNSS: User Equipment Processing and Errors;Groves,2015

4. A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas;Groves,2013

5. A New Positioning Filter: Phase Smoothing in the Position Domain

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3