Quantifying Marine Macro Litter Abundance on a Sandy Beach Using Unmanned Aerial Systems and Object-Oriented Machine Learning Methods

Author:

Gonçalves GilORCID,Andriolo UmbertoORCID,Gonçalves LuísaORCID,Sobral PaulaORCID,Bessa FilipaORCID

Abstract

Unmanned aerial systems (UASs) have recently been proven to be valuable remote sensing tools for detecting marine macro litter (MML), with the potential of supporting pollution monitoring programs on coasts. Very low altitude images, acquired with a low-cost RGB camera onboard a UAS on a sandy beach, were used to characterize the abundance of stranded macro litter. We developed an object-oriented classification strategy for automatically identifying the marine macro litter items on a UAS-based orthomosaic. A comparison is presented among three automated object-oriented machine learning (OOML) techniques, namely random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). Overall, the detection was satisfactory for the three techniques, with mean F-scores of 65% for KNN, 68% for SVM, and 72% for RF. A comparison with manual detection showed that the RF technique was the most accurate OOML macro litter detector, as it returned the best overall detection quality (F-score) with the lowest number of false positives. Because the number of tuning parameters varied among the three automated machine learning techniques and considering that the three generated abundance maps correlated similarly with the abundance map produced manually, the simplest KNN classifier was preferred to the more complex RF. This work contributes to advances in remote sensing marine litter surveys on coasts, optimizing the automated detection on UAS-derived orthomosaics. MML abundance maps, produced by UAS surveys, assist coastal managers and authorities through environmental pollution monitoring programs. In addition, they contribute to search and evaluation of the mitigation measures and improve clean-up operations on coastal environments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3