Reconstruction of Cloud-free Sentinel-2 Image Time-series Using an Extended Spatiotemporal Image Fusion Approach

Author:

Zhou Fuqun,Zhong DetangORCID,Peiman Rihana

Abstract

Time-series for medium spatial resolution satellite imagery are a valuable resource for environmental assessment and monitoring at regional and local scales. Sentinel-2 satellites from the European Space Agency (ESA) feature a multispectral instrument (MSI) with 13 spectral bands and spatial resolutions from 10 m to 60 m, offering a revisit range from 5 days at the equator to a daily approach of the poles. Since their launch, the Sentinel-2 MSI image time-series from satellites have been used widely in various environmental studies. However, the values of Sentinel-2 image time-series have not been fully realized and their usage is impeded by cloud contamination on images, especially in cloudy regions. To increase cloud-free image availability and usage of the time-series, this study attempted to reconstruct a Sentinel-2 cloud-free image time-series using an extended spatiotemporal image fusion approach. First, a spatiotemporal image fusion model was applied to predict synthetic Sentinel-2 images when clear-sky images were not available. Second, the cloudy and cloud shadow pixels of the cloud contaminated images were identified based on analysis of the differences of the synthetic and observation image pairs. Third, the cloudy and cloud shadow pixels were replaced by the corresponding pixels of its synthetic image. Lastly, the pixels from the synthetic image were radiometrically calibrated to the observation image via a normalization process. With these processes, we can reconstruct a full length cloud-free Sentinel-2 MSI image time-series to maximize the values of observation information by keeping observed cloud-free pixels and calibrating the synthetized images by using the observed cloud-free pixels as references for better quality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of remote sensing image spatiotemporal fusion: Challenges, applications and recent trends;Remote Sensing Applications: Society and Environment;2023-11

2. The Application of Remote Sensing Technologies for Enhancing Agroecosystems Performance;IOP Conference Series: Earth and Environmental Science;2023-04-01

3. Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine;Remote Sensing;2022-09-04

4. Rapidly Single-Temporal Remote Sensing Image Cloud Removal based on Land Cover Data;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

5. Reconstruction of Optical Image Time Series With Unequal Lengths SAR Based on Improved Sequence–Sequence Model;IEEE Transactions on Geoscience and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3