An Improved Conversion Relationship between Tropical Cyclone Intensity Index and Maximum Wind Speed for the Advanced Dvorak Technique in the Northwestern Pacific Ocean Using SMAP Data

Author:

Ryu Sumin,Hong Sung-EunORCID,Park Jun-Dong,Hong SungwookORCID

Abstract

The Advanced Dvorak Technique (ADT) uses geostationary satellite data to estimate tropical cyclone (TC) intensity owing to the difficulty in directly observing a TC’s internal structure. This study presents a new relationship (Hong and Ryu scale) between the current intensity (CI) number and estimated maximum wind speed (MWS) of TCs over the northwestern Pacific region; the CI number is the TC intensity index retrieved from the ADT. The Soil Moisture Active Passive (SMAP) with the L-band (1.4 GHz) microwave radiometer, is used to calibrate and produce the new Hong and Ryu scale for the ADT algorithm. Japan Meteorological Agency (JMA) best track MWS data, SMAP sea surface wind speed estimates, and ADT’s TC intensity data between 2015–2018 are spatiotemporally collocated for the calibration process. The CI number is derived from the Korea Meteorological Administration (KMA) operational ADT which uses the Koba scale to convert to the MWS for validation against the MWS of the best track. The conversion relationships between CI number and SMAP MWS, and between SMAP MWS and MWS of the best track a derived, and the MWS of two ADTs with the Koba and Hong and Ryu scales are then estimated using the same CI numbers with TC intensity data between 2015–2018. Finally, the MWS of the ADT with the Koba scale and the new ADT with the proposed Hong and Ryu scale are independently validated on best track data from 2013–2014. The MWS root mean square error (RMSE) is 4.39 m/s for the new ADT using the Hong and Ryu scale, which is lower than 4.77 m/s RMSE of the ADT using the Koba scale. Hence, the ADT using the Hong and Ryu scale can modestly improve the accuracy of TC intensity analysis in the northwestern Pacific region.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3