Machine Learning and Artificial Intelligence for Pathogen Identification and Antibiotic Resistance Detection: Advancing Diagnostics for Urinary Tract Infections

Author:

Harris Mohammed1

Affiliation:

1. Department of Healthcare Genetics and Genomics, Clemson University, Clemson, SC 29634, USA

Abstract

Machine learning is being increasingly applied in various aspects of medicine. The availability of large amounts of digital health records has enabled researchers to apply machine learning algorithms to tackle different medical problems. Urinary tract infections (UTIs) are common bacterial infections that are prone to being misdiagnosed and over-treated with antibiotics. For appropriate tailored antibiotic therapy, new diagnostic methods providing rapid pathogen identification and antibiotic susceptibility testing are urgently needed. In this review, we first discuss emerging technologies that have employed machine learning models to deliver speedy diagnostic results, particularly for urinary tract infections. We then explore how machine learning models are enabling sequence-based diagnostics by predicting antibiotic resistances from genome sequencing data. Finally, we examine different studies that apply machine learning to electronic health records to improve UTI diagnosis, to reduce antibiotic use and guide treatments without urine culture, and to reduce clinical workload and unnecessary hospital visits.

Publisher

MDPI AG

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Infectious Skin Disease;Dermatological Reviews;2024-06

2. Accurate Prediction of Bacterial Infections using Deep Learning-Based Approaches: A Recent Study and Progress;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3