A Robust PDR/UWB Integrated Indoor Localization Approach for Pedestrians in Harsh Environments

Author:

Tong HaibinORCID,Xin Ning,Su Xianli,Chen Tengfeng,Wu Jingjing

Abstract

Wireless sensor networks (WSNs) and the Internet of Things (IoT) have been widely used in industrial, construction, and other fields. In recent years, demands for pedestrian localization have been increasing rapidly. In most cases, these applications work in harsh indoor environments, which have posed many challenges in achieving high-precision localization. Ultra-wide band (UWB)-based localization systems and pedestrian dead reckoning (PDR) algorithms are popular. However, both have their own advantages and disadvantages, and both exhibit a poor performance in harsh environments. UWB-based localization algorithms can be seriously interfered by non-line-of-sight (NLoS) propagation, and PDR algorithms display a cumulative error. For ensuring the accuracy of indoor localization in harsh environments, a hybrid localization approach is proposed in this paper. Firstly, UWB signals cannot penetrate obstacles in most cases, and traditional algorithms for improving the accuracy by NLoS identification and mitigation cannot work in this situation. Therefore, in this study, we focus on integrating a PDR and UWB-based localization algorithm according to the UWB communication status. Secondly, we propose an adaptive PDR algorithm. UWB technology can provide high-precision location results in line-of-sight (LoS) propagation. Based on these, we can train the parameters of the PDR algorithm for every pedestrian, to improve the accuracy. Finally, we implement this hybrid localization approach in a hardware platform and experiment with it in an environment similar to industry or construction. The experimental results show a better accuracy than traditional UWB and PDR approaches in harsh environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3