Analysis of Adhesion between Wet Clay Soil and Rotary Tillage Part in Paddy Field Based on Discrete Element Method

Author:

Cheng Jian,Zheng Kan,Xia Junfang,Liu Guoyang,Jiang Liu,Li Dong

Abstract

To analyze the process of wet clay soil adhering to the rotary tillage part during rotary tillage in paddy field, simulation tests were carried out based on the discrete element method (DEM) in this study. The Plackett-Burman (PB) test was applied to obtain simulation parameters that significantly affected the soil adhesion mass. The Box-Behnken design (BBD) based on the principle of response surface method (RSM) was used to establish a regression model between significant parameters and soil adhesion mass. The soil adhesion mass obtained from the actual soil bin test as the response value was brought into the regression model. The optimal simulation parameters were obtained: the particle-particle coefficient of rolling friction, the particle-geometry coefficient of static friction, and the particle-particle JKR (Johnson-Kendall-Roberts) surface energy were 0.09, 0.81, and 61.55 J·m−2, respectively. The reliability of the parameters was verified by comparing the soil adhesion mass obtained under the optimal simulation parameters with the actual test value, and the relative error was 1.84%. Analysis of the rotary tillage showed that soil adhesion was mainly concentrated in the sidelong section of the rotary blade. The maximum number of upper soil particles adhering to the rotary tillage part was 2605 compared to the middle soil and lower soil layers. The longer the distance the rotary tillage part was operated in the soil for, the more soil particles would adhere to it. This study can provide a reference for the rational selection of simulation parameters for rotary tillage and the analysis of soil adhesion process in rotary tillage.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3