Abstract
The alkylation of benzene by propane to yield isopropylbenzene (iPrPh) was studied using bifunctional Pd-acid catalysts, such as Pd-heteropoly acid and Pd-zeolite, in a fixed bed reactor at 300 °C and 1 bar pressure. Keggin-type tungstosilicic acid H4SiW12O40 (HSiW) and zeolite HZSM-5 were used as the acid components in these catalysts. The reaction occurred most efficiently over 2%Pd/25%HSiW/SiO2, giving iPrPh with up to 88% selectivity. The Pd-HSiW catalyst was more selective than the Pd-HZSM-5; the latter gave only 11–18% iPrPh selectivity. The reaction proceeded via a bifunctional mechanism including the dehydrogenation of propane to form propene on Pd sites, followed by the alkylation of benzene with the propene on acid sites. The effect of Pd loading in Pd-HSiW and Pd-HZSM-5 catalysts indicated that the first step reached quasi-equilibrium at 1.5–2% Pd loading and the second step became rate limiting. The addition of gold to Pd-HSiW enhanced the activity of this catalyst, although the Au-HSiW without Pd was inert.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献