Surface Nanocrystallization and Numerical Modeling of 316L Stainless Steel during Ultrasonic Shot Peening Process

Author:

Li Pengyi,Hu Shan,Liu Yanxiong,Hua Lin,Yin Fei

Abstract

Surface nanocrystallization of metals and alloys via high-frequency ultrasonic shot peening (USP) can significantly increase the mechanical properties of the materials. However, the relationship between the external process parameters and the internal microstructure of the materials is still unclear and an accurate numerical model to simulate the USP process is urgently required for better control of the grain refinement process. In this study, we successfully realized surface nanocrystallization of 316L stainless steel using USP with an ultrasonic frequency and amplitude of 20 kHz and 50 μm, respectively. The microstructure evaluation of 316L stainless steel during USP was revealed. We established a finite element numerical model to simulate the high-frequency USP process and calculated the plastic strain and stress distribution of 316L stainless steel during the grain refinement process. We investigated the effects of the ultrasonic frequency, working distance, and ultrasonic amplitude on the plastic strain and stress distribution on the materials using the finite element simulation method. The dynamic behavior of the shot during the USP process was studied using a high-speed camera, and the FE simulation results agreed well with the experimental results. We also investigated the impact of multiple shots during the USP process by the high-speed camera observation and FE simulation. Research results indicate that high-frequency USP is an effective method to obtain large-scale bulk nanocrystalline materials and the finite element simulation can help materials scientists and engineers to better understand the relationship between the process parameters and microstructure evaluation of 316L stainless steel.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Overseas Expertise Introduction Project for Discipline Innovation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3