Microstructure and Properties of Laser Surface Remelting AlCoCrFeNi2.1 High-Entropy Alloy

Author:

Chen Jingrun,Zhang Jing,Li Ke,Zhuang Dongdong,Zang Qianhao,Chen Hongmei,Lu Yandi,Xu Bo,Zhang Yan

Abstract

In this study, laser surface remelting of an AlCoCrFeNi2.1 high-entropy alloy was performed using a Yb:YAG laser. The effects of laser surface remelting on the phase structure, microstructure, Vickers hardness, frictional wear properties, and corrosion resistance of the high-entropy alloy were investigated. The remelted layer of the AlCoCrFeNi2.1 high-entropy alloy was produced by remelting at 750 W laser power and formed a good metallurgical bond with the substrate. The X-ray diffraction results showed that the 750 W remelted layer consisted of face-centered cubic and body-centered cubic phases, which were consistent with the phases of the as-cast AlCoCrFeNi2.1 high-entropy alloy, and a new phase was not generated within the remelted layer. Laser surface remelting is very effective in refining the lamellar structure, and the 750 W remelted layer shows a finer lamellar structure compared to the matrix. The surface hardness and wear resistance of the AlCoCrFeNi2.1 high-entropy alloy were substantially improved after laser surface remelting. In a 3.5 wt.% NaCl solution, the laser-remelted surface had a larger self-corrosion potential and smaller self-corrosion current density, and the corrosion resistance was better than that of the as-cast high-entropy alloy.

Funder

the National Natural Science Foundation of China

the National Natural Science Foundation of Jiangsu Provence

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3