Author:
Chen Jingrun,Zhang Jing,Li Ke,Zhuang Dongdong,Zang Qianhao,Chen Hongmei,Lu Yandi,Xu Bo,Zhang Yan
Abstract
In this study, laser surface remelting of an AlCoCrFeNi2.1 high-entropy alloy was performed using a Yb:YAG laser. The effects of laser surface remelting on the phase structure, microstructure, Vickers hardness, frictional wear properties, and corrosion resistance of the high-entropy alloy were investigated. The remelted layer of the AlCoCrFeNi2.1 high-entropy alloy was produced by remelting at 750 W laser power and formed a good metallurgical bond with the substrate. The X-ray diffraction results showed that the 750 W remelted layer consisted of face-centered cubic and body-centered cubic phases, which were consistent with the phases of the as-cast AlCoCrFeNi2.1 high-entropy alloy, and a new phase was not generated within the remelted layer. Laser surface remelting is very effective in refining the lamellar structure, and the 750 W remelted layer shows a finer lamellar structure compared to the matrix. The surface hardness and wear resistance of the AlCoCrFeNi2.1 high-entropy alloy were substantially improved after laser surface remelting. In a 3.5 wt.% NaCl solution, the laser-remelted surface had a larger self-corrosion potential and smaller self-corrosion current density, and the corrosion resistance was better than that of the as-cast high-entropy alloy.
Funder
the National Natural Science Foundation of China
the National Natural Science Foundation of Jiangsu Provence
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献