Void Mediated Failure at the Extremes: Spallation in Magnesium and Aluminum

Author:

Williams Cyril LabodeORCID

Abstract

This paper reviews the role of void nucleation, growth, and coalescence on the spall failure process in light metals. Based on the review of the open literature, the preponderance of evidence show that void nucleation, growth, and coalescence are prevalent in light metals such as HCP magnesium and FCC aluminum alloys. The as-received microstructure and its evolution play a crucial role on how voids nucleate, grow, and coalesce. Nucleation of voids in these light metals and metallic alloys can be either homogeneous and heterogeneous but at high enough stresses, both homogeneous and heterogeneous nucleation can be activated simultaneously. Secondary phase particles and intermetallics can strongly influence spall failure, through matrix-precipitate/intermetallic debonding or precipitate/intermetallic cracking during shock compression. Studying spall failure through modeling has proven to be an invaluable tool in developing a fundamental understanding of void nucleation, growth, coalescence, and consequent spall failure. However, since new alloys are currently been developed, more experimental and modeling research are needed to further understand how spall failure initiate and grow in these new alloys.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference156 articles.

1. Spall Fracture;Antoun,2003

2. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets;Hopkinson;Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character,1914

3. Micromechanics of spall and damage in tantalum

4. The spall strength of condensed matter

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3