Author:
Griffiths Malcolm,Xu Steven,Ramos Nervi Juan Eduardo
Abstract
Rate theory models have been developed for the swelling and He-embrittlement of austenitic stainless steels and Ni-alloys in nuclear reactors. The models illustrate how microstructure evolution during irradiation affects the rate of change of mechanical properties and the dimensional stability. He-stabilised cavity accumulation on grain boundaries, which causes brittle failure at low stresses and strains known as He-embrittlement, is shown to be strongly dependent on the irradiation temperature and the rate of production of Frenkel pairs and He atoms. The results show that the accumulation of cavities on grain boundaries falls into two regimes: (i) that dictated by matrix bubble swelling at low temperatures; and (ii) that dictated by matrix void swelling at high temperatures.
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献