Author:
Peng Xiaowen,Song Kexing,Zhou Yanjun,Huang Tao,Liu Haitao,Hua Yunxiao,Yang Jingzhao,Wang Guojie
Abstract
The present work aims to systematically investigate the influence of P content on the microstructure and texture evolution of oxygen-free copper during intermediate annealing and final cold rolling. The microstructure and texture evolution were studied by electron backscattered diffraction and transmission electron microscopy. With the addition of P, the grains refined and a large fraction of low angle grain boundaries (LAGBs) emerged after intermediate annealing. The texture transformed from pure metal type for pure Cu to the α-fiber texture which included brass and Goss texture as P was added. The recrystallization temperature increased with the addition of P, and refined grains after the final cold rolling process. The addition of elemental P would reduce the stacking fault energy, and then influence the transformation of the deformation and recrystallization texture of the copper. Accompanied by the evolution of the deformation texture, the recrystallization cubic texture {001}<100> was suppressed and a strong {236}<385> brass recrystallization texture emerged with the addition of elemental P after the intermediate annealing and subsequent final cold rolling process.
Funder
Zhongyuan Scholar Workstation
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献