Effects of Thermal Shock on the Microstructures and Mechanical Properties Evolution of 310S Welded Joints at 1100 °C

Author:

Jiang Yunlu,Kan Ying,Wu Changzhong,Chen Huaining

Abstract

In order to reveal the effects of the glass solidification bottling process of high-level liquid radioactive wastes on the welded joints of containers, the microstructure evolution and mechanical properties of 310S stainless steel welded joints were investigated. For this purpose, samples were heat-treated in a resistance furnace at 1100 °C, with two groups of samples being thermally shocked and heat-treated in the furnace. The results indicated that the grain-size distribution changed from unimodal to bimodal for the thermally shocked samples, which was caused by abnormal growth due to the grain growth driving force during recrystallization. Spinel oxide ((Fe, Cr, Ni)3O4) and Cr2O3 were the main oxides at 1100 °C. The dislocations almost disappeared and needle-like structures that were rich in N and Cr formed in the welded joints after being thermally shocked. The tensile properties of the thermally shocked welded joints showed decreases in yield strength and plasticity. The fracture morphologies of the samples heated in the furnace and the as-welded samples presented with dimples. However, the morphologies of the fracture surfaces of the thermally shocked samples presented large numbers of secondary cracks and smooth characteristics.

Funder

LingChuang Research Project of China National Nuclear Corporation.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3