Optimization of As(V) Removal by Dried Bacterial Biomass: Nonlinear and Linear Regression Analysis for Isotherm and Kinetic Modelling

Author:

Altowayti Wahid Ali HamoodORCID,Salem Ali AhmedORCID,Al-Fakih Abdo MohammedORCID,Bafaqeer Abdullah,Shahir ShafinazORCID,Tajarudin Husnul AzanORCID

Abstract

Arsenic occurrence and toxicity records in various industrial effluents have prompted researchers to find cost-effective, quick, and efficient methods for removing arsenic from the environment. Adsorption of As(V) onto dried bacterial biomass is proposed in the current work, which continues a line of previous research. Dried bacterial biomass of WS3 (DBB) has been examined for its potential to remove As(V) ions from aqueous solutions under various conditions. Under optimal conditions, an initial concentration of 7.5 ppm, pH 7, adsorbent dose of 0.5 mg, and contact period of 8 h at 37 °C results in maximum removal of 94%. Similarly, amine, amide, and hydroxyl groups were shown to contribute to As(V) removal by Fourier transform infrared spectroscopy (FTIR), and the adsorption of As(V) in the cell wall of DBB was verified by FESEM-EDX. In addition, equilibrium adsorption findings were analyzed using nonlinear and linear isotherms and kinetics models. The predicted best-fit model was selected by calculating the coefficient of determination (R2). Adsorption parameters representative of the adsorption of As(V) ions onto DBB at R2 values were found to be more easily attained using the nonlinear Langmuir isotherm model (0.95). Moreover, it was discovered that the nonlinear pseudo-second-order rate model using a nonlinear regression technique better predicted experimental data with R2 than the linear model (0.98). The current study verified the nonlinear approach as a suitable way to forecast the optimal adsorption isotherm and kinetic data.

Funder

Universiti Tecknologi Malaysia

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3