High-Temperature Corrosion Behavior of Bi3.75La0.25Ti3O12 and Bi3La1Ti3O12 Coating Prepared by rf Magnetron Sputtering

Author:

Bautista-Ruiz JorgeORCID,Sánchez-Molina Jorge,Aperador WillianORCID

Abstract

Using the rf magnetron sputtering technique, Bi3.75La0.25Ti3O12 and Bi3La1Ti3O12 coatings were formed and obtained as a thin film on Hastelloy substrates. When subjected to high-temperature conditions, the effect of lanthanum on the anti-corrosive properties of the coatings was investigated. The anti-corrosive response was evaluated by electrochemical impedance spectroscopy and potentiodynamic curves, which are rarely reported. Hot corrosion occurs through the electrochemical mechanism, and more information can be obtained through electrochemical corrosion tests, which are very effective and fast. The electrochemical behavior at high temperatures was studied via molten salt corrosion tests, potentiodynamic polarization curves, and electrochemical impedance spectroscopy. Additionally, the coatings were evaluated via scanning electron microscopy and transmission microscopy to determine their morphology. With X-ray diffraction, the crystallinity of the films was determined. It was determined that the corrosion rate directly correlates with the temperature, attributed to the mechanisms induced by the Na2SO4 and V2O5 salts that generated condensation. As the temperature increases, the density of the corrosion current increases in the thin films of Bi3.75La0.25Ti3O12 and Bi3La1Ti3O12. When comparing the two compounds, it is determined that the increase in lanthanum alters the positive acid character, thus reducing the dissolution of the oxides and increasing protection.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3