Increasing Wear Resistance of Low-Carbon Steel by Anodic Plasma Electrolytic Sulfiding

Author:

Mukhacheva Tatiana,Kusmanov SergeiORCID,Suminov IgorORCID,Podrabinnik PavelORCID,Khmyrov Roman,Grigoriev SergeyORCID

Abstract

The paper considers the problem of increasing the wear resistance of steel products. For the first time, the technology of anodic plasma electrolytic sulfiding is proposed to increase the wear resistance of low-carbon steel. The composition, structure, and frictional properties of modified surface layers after sulfiding have been studied. The type and mechanism of wear are determined. The influence of the sliding speed of the sample over the counter body on the friction and wear resistance of the samples after processing is analyzed. The possibility of saturation of low-carbon steel with sulfur in an electrolyte with sulfur compounds is shown. The iron sulfide FeS in the surface layer is found. It has been established that the thickness of the sulfide zone and the relative amount of FeS in it have a positive effect on reducing the coefficient of friction and mass wear. The greatest decrease in the friction coefficient by 5.5 times and weight wear by 64 times occurs after sulfiding at 500 °C for 10 min. It was found that the mechanism of wear of sulfided samples is fatigue wear during dry friction and plastic contact.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3