Metal Transfer Behavior of Metal-Cored Arc Welding in Pure Argon Shielding Gas

Author:

Trinh Ngoc QuangORCID,Tashiro ShinichiORCID,Suga Tetsuo,Kakizaki Tomonori,Yamazaki Kei,Lersvanichkool Ackadech,Bui Hanh Van,Tanaka Manabu

Abstract

The metal transfer behavior of gas metal arc welding in a pure argon shielding gas was evaluated through experiments using a standard solid wire and a metal-cored wire. The investigation was conducted using observation techniques based on recording images by a high-speed camera equipped with laser assistance and bandpass filters in a range of welding currents. It was observed that the metal transfer mode became a streaming transfer mode when the welding current increased in the solid wire. Meanwhile, in the metal-cored wire, the droplet transfer frequency increased, and the droplet diameter decreased without changing the metal transfer mode in the globular transfer mode. We surmised that the streaming transfer in the solid wire would be caused by the spread of argon plasma at the wire tip, which decreases the effect of the electromagnetic force on droplet detachment. Conversely, due to the presence of flux inside the metal-cored wire, the argon plasma could not spread and was attached close to the iron vapor plasma at the overhead of the droplet. Hence, the electromagnetic force acting on the side of the unmelted flux was ineffective at promoting droplet detachment, preventing the transition to a streaming transfer mode. Furthermore, weld bead formation in the metal-cored wire was better than that in a conventional solid wire.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference31 articles.

1. The physics of fusion welding. Part 2: Mass transfer and heat flow

2. Usability of arc types in industrial welding

3. Observation of Metal Transfer during Gas Metal Arc Welding;Rhee;Am. Soc. Mech. Eng. Prod. Eng. Div. PED,1992

4. The effect of the type of plasma gas on current constriction at the molten tip of an arc electrode

5. Observation and Classification of Droplet Transfer in Gas Metal Arc Welding;Izutani,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3