Dependence of Particle Size and Geometry of Copper Powder on the Porosity and Capillary Performance of Sintered Porous Copper Wicks for Heat Pipes

Author:

Hoan Trinh Minh,Toan Nguyen Van,Hung Nguyen Phu,Trinh Pham VanORCID,Trung Tran Bao,Phuong Doan Dinh

Abstract

Permeability and capillary performance are the most important parameters relating to the thermal performance of heat pipes. These parameters are deeply linked to pore structure, which has been influenced by the starting powder utilized. In this paper, the effect of particle size and geometry of copper powder on the porosity and capillary performance of porous wicks were systematically studied. Sintered porous wicks were made from different-sized spherical (58 μm, 89 μm, 125 μm) and dendritic (59 μm, 86 μm, 130 μm) Cu powders. The results demonstrated that the porosity and capillary performance of both types of copper powder increase with particle size due to an increase in the connectivity between internal pores. In comparison to the spherical powder, the dendritic powder demonstrated superior capillary efficiency as well as greater porosity. Additionally, a model was proposed for the capillary performance and permeability of sintered porous copper. The predicted results were quite comparable to the experimental data, demonstrating the effect of the starting powder. These findings suggest that porosity and capillary performance of porous wicks are strongly related to powder geometry as well as particle size.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3