Abstract
Joining by forming operations presents powerful and complex joining techniques. Clinching is a well-known joining process for use in sheet metalworking. Currently, clinched joints are focusing on mechanically enhanced connections. Additionally, the demand for integrating electrical requirements to transmit electrical currents will be increased in the future. This integration is particularly important, for instance, in the e-mobility sector. It enables connecting battery cells with electrical joints of aluminum and copper. Systematic use of the process-specific advantages of this joining method opens up the possibility to find and create electrically optimized connections. The optimization for the transmission of electrical currents will be demonstrated for clinched joints by adapting the tool geometry and the clinched joint design. Based on a comparison of the electrical joint resistance, the limit use temperature is defined for the joining materials used based on the microstructural condition and the aging condition due to artificial aging. As a result of the investigations carried out, reliable current transmission at a constant conductor temperature of up to 120 °C can be achieved for clinched copper–copper joints. In the case of pure aluminum joints and mixed joints of aluminum and copper, long-term stable current transmission can be ensured up to a conductor temperature of 100 °C.
Funder
Deutsche Forschungsgemeinschaft
German Federation of Industrial Research Associations
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献