Features of Cathodic Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel in an Aqueous Electrolyte of Ammonium Nitrate and Glycerin

Author:

Tambovskiy Ivan,Mukhacheva Tatiana,Gorokhov IlyaORCID,Suminov IgorORCID,Silkin Sergey,Dyakov IlyaORCID,Kusmanov SergeiORCID,Grigoriev SergeyORCID

Abstract

The possibility of using an aqueous non-toxic electrolyte of ammonium nitrate and glycerin for the cathodic plasma electrolytic nitrocarburizing of low-carbon steel is considered in this paper. Surface morphology and roughness, element and phase compositions, and microhardness of the modified layer were investigated. Kinetic calculations of the processes of nitrogen and carbon diffusion into the steel surface are proposed, taking into account their mutual influence. Wear resistance was studied under dry friction conditions with tool alloy steel as a counter-body. Corrosion studies are performed using potentiodynamic polarization curves in 3.5% sodium chloride solution. The plasma electrolytic nitrocarburizing in an aqueous electrolyte with ammonium nitrate and glycerin is established to increase surface hardness up to 980 HV due to the formation of a nitrocarburized layer with 1.35 ± 0.12% carbon and 0.32 ± 0.08% nitrogen concentration. The influence of erosion in electrolyte plasma and high-temperature oxidation on the morphology and surface roughness is shown. The presence of a dense oxide layer, low surface roughness, and high hardness of the diffusion layer favor a decrease in the friction coefficient by 1.3 times, weight wear by 1.8 times and corrosion current density by 1.4 times.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3