Joint Modelling of Flood Hydrograph Peak, Volume and Duration Using Copulas—Case Study of Sava and Drava River in Croatia, Europe

Author:

Lacko Martina,Potočki KristinaORCID,Škreb Kristina Ana,Bezak NejcORCID

Abstract

Morphodynamic changes in the riverbed may be accelerated by the climate change-induced effects, mostly through the increase of the frequency of extreme climatic events such as floods. This can lead to scouring of the riverbed around the bridge substructure and consequently reduces its overall stability. In order to better understand hydromorphological processes at the local scale, the influence of floods on bridge scour requires a detailed analysis of several interacting flood hydrograph characteristics. This paper presents a multivariate analysis of the annual maximum (AM) flood discharge data at four gauging stations on the Drava and Sava Rivers in Croatia (Europe). As part of the hydrograph analysis, multiple baseflow separation methods were tested. Flood volumes and durations were derived after extracting the baseflow from measured discharge data. Suitable marginal distribution functions were fitted to the peak discharge (Q), flood volume (V) and duration (D) data. Bivariate copula analyses were conducted for the next pairs: peak discharge and volume (Q–V), hydrograph volume and duration (V–D) and peak discharge and hydrograph duration (Q–D). The results of the bivariate copula analyses were used to derive joint return periods for different flood variable combinations, which may serve as a preliminary analysis for the pilot bridges of the R3PEAT project where the aim is to investigate the influences on the riverbed erosion around bridges with installed scour countermeasures. Hence, a design hydrograph was derived that could be used as input data in the hydraulic model for the investigation of the bridge scour dynamics within the project and a preliminary methodology is proposed to be applied. The results indicate that bivariate frequency analysis can be very sensitive to the selected baseflow separation methodology. Therefore, future studies should test multiple baseflow separation methods and visually inspect the performance.

Funder

Croatian Science Foundation

Slovenian Research Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference100 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3