Optimal CNN–Hopfield Network for Pattern Recognition Based on a Genetic Algorithm

Author:

Keddous Fekhr Eddine,Nakib AmirORCID

Abstract

Convolutional neural networks (CNNs) have powerful representation learning capabilities by automatically learning and extracting features directly from inputs. In classification applications, CNN models are typically composed of: convolutional layers, pooling layers, and fully connected (FC) layer(s). In a chain-based deep neural network, the FC layers contain most of the parameters of the network, which affects memory occupancy and computational complexity. For many real-world problems, speeding up inference time is an important matter because of the hardware design implications. To deal with this problem, we propose the replacement of the FC layers with a Hopfield neural network (HNN). The proposed architecture combines both a CNN and an HNN: A pretrained CNN model is used for feature extraction, followed by an HNN, which is considered as an associative memory that saves all features created by the CNN. Then, to deal with the limitation of the storage capacity of the HNN, the proposed work uses multiple HNNs. To optimize this step, the knapsack problem formulation is proposed, and a genetic algorithm (GA) is used solve it. According to the results obtained on the Noisy MNIST Dataset, our work outperformed the state-of-the-art algorithms.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3