Efficiency of NZ2114 on Superficial Pyoderma Infected with Staphylococcus pseudintermedius

Author:

Yang Na123,Huang Yan1234,Li Yuanyuan123,Teng Da123,Mao Ruoyu123ORCID,Hao Ya123,Wei Lingyun4,Wang Jianhua123ORCID

Affiliation:

1. Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

4. School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology—WIT, Wuhan 430075, China

Abstract

Staphylococcus pseudintermedius (S. pseudintermedius) is the main pathogen causing pyoderma of canines. With the emergence of drug-resistant bacteria, traditional antibiotic treatments are limited. As a potential antibacterial agent, NZ2114 was effective against S. pseudintermedius, including drug-resistant strains. Its bactericidal efficacy was superior to mupiroxacin, ofloxacin and lincomycin. To facilitate the transcutaneous delivery of NZ2114 for the treatment of superficial pyoderma, chemical permeation enhancers were added since water-soluble NZ2114 does not easily penetrate the skin lipid layer. Two different NZ2114 sprays were prepared by combining 1% Azone + 10% propylene glycol (PG) or 5% N-methylpyrrolidone (NMP) + 10% PG with NZ2114 after screening. The cumulative permeability of NZ2114 sprays were 244.149 and 405.245 μg/cm2 at 24 h with an in vitro percutaneous assay of mice skin, which showed a 244% and 405% increase in skin permeability than NZ2114, respectively. In addition, the efficacy of NZ2114 sprays in reducing skin bacteria colonisation was demonstrated in a mouse model of superficial pyoderma (24 mice, 3 mice/group) induced by S. pseudintermedius, and the 5% NMP + 10% PG + NZ2114 group had the best therapeutic effect compared to the other groups. This preparation did not cause any skin irritation, laying the foundation for the development of an effective and non-toxic topical product.

Funder

National Natural Science Foundation of China

Innovation Program of Agricultural Science and Technology (ASTIP) in CAAS

National Key Research and Development Plan—High Expression of Thiopeptides and their Analogs

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3