Abstract
Earthquake engineers are typically faced with the challenge of safely and economically designing structures in highly uncertain seismic environments. Yield strength demand spectra provide basic information for the seismic design of structures and take nonlinear behavior into account. The designed structures, however, must be checked for seismic performance through dynamic analysis. Design-response spectra compatible earthquake motions (DRSCEM) are commonly used for this purpose. Because DRSCEM are strongly affected by the assigned phase characteristics, in this paper, we simulate realistic earthquake motion phase based on a stochastic process that modifies fractional Brownian motion (fBm). The parameters that control this process were determined via regression equations as functions of the earthquake magnitude and epicenter distance, which were obtained through a regression analysis that was performed on data from a database of recorded ground motions. After validating the efficiency of the modeled phase spectrum, large numbers of DRSCEMs were simulated with which several ductility demand spectra were obtained. By statistically analyzing these results, a rigorous yield seismic coefficient demand spectrum is proposed.
Funder
Academic Program Development of Jiangsu Higher Education Institutions
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献