An Optical Interference Suppression Scheme for TCSPC Flash LiDAR Imagers

Author:

Carrara Lucio,Fiergolski Adrian

Abstract

This paper describes an optical interference suppression scheme that allows flash light detection and ranging (LiDAR) imagers to run safely and reliably in uncontrolled environments where multiple LiDARs are expected to operate concurrently. The issue of optical interference is a potential show-stopper for the adoption of flash LiDAR as a technology of choice in multi-user application fields such as automotive sensing and autonomous vehicle navigation. The relatively large emission angle and field of view of flash LiDAR imagers make them especially vulnerable to optical interference. This work illustrates how a time-correlated single-photon counting LiDAR can control the timing of its laser emission to reduce its statistical correlation to other modulated or pulsed light sources. This method is based on a variable random delay applied to the laser pulse generated by LiDAR and to the internal circuitry measuring the time-of-flight. The statistical properties of the pseudorandom sequence of delays determines the effectiveness of LiDAR resilience against unintentional and intentional optical interference. For basic multi-camera operation, a linear feedback shift register (LFSR) was used as a random delay generator, and the performance of the interference suppression was evaluated as a function of sequence length and integration time. Direct interference from an identical LiDAR emitter pointed at the same object was reduced up to 50 dB. Changing integration time between 10 ms and 100 ms showed a marginal impact on the performance of the suppression (less than 3 dB deviation). LiDAR signal integrity was characterized during suppression, obtaining a maximum relative deviation of the measured time-of-flight of 0.1%, and a maximum deviation of measurements spread (full-width half-maximum) of 3%. The LiDAR signal presented an expected worst-case reduction in intensity of 25%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. LiDARs For Automotive And Industrial Applications 2018,2018

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3