Bio-Inspired Aerodynamic Noise Control: A Bibliographic Review

Author:

Wang Yong,Zhao KunORCID,Lu Xiang-Yu,Song Yu-Bao,Bennett Gareth J.ORCID

Abstract

It is well-known that many species of owl have the unique ability to fly silently, which can be attributed to their distinctive and special feather adaptations. Inspired by the owls, researchers attempted to reduce the aerodynamic noise of aircraft and other structures by learning their noise reduction features from different viewpoints and then using the gained knowledge to develop a number of innovative noise reduction solutions. Although fruitful results have been achieved in the bio-inspired aerodynamic noise control, as far as the authors know, comparatively little work has been done to summarize the main findings and progresses in this area. In this bibliographic survey, we systematically review the progresses and trends of the bio-inspired aerodynamic noise control, including the macroscopic and microscopic morphological characteristics of the owl wing feathers, the noise measurements on both flying birds in the field and prepared wings in the wind tunnel, as well as theoretical, numerical and experimental studies that explored the feasibility, parameter influence, aerodynamic effects and underlying mechanisms of the four main bio-inspired noise reduction techniques, i.e., leading edge serrations, trailing edge serrations, fringe-type trailing edge extensions and porous material inspired noise reduction. Finally, we also give some suggestions for future work.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3