A Novel Extraction Method for Wildlife Monitoring Images with Wireless Multimedia Sensor Networks (WMSNs)

Author:

Liu Wending,Liu Hanxing,Wang Yuan,Zheng Xiaorui,Zhang Junguo

Abstract

In remote areas, wireless multimedia sensor networks (WMSNs) have limited energy, and the data processing of wildlife monitoring images always suffers from energy consumption limitations. Generally, only part of each wildlife image is valuable. Therefore, the above mentioned issue could be avoided by transmitting the target area. Inspired by this transport strategy, in this paper, we propose an image extraction method with a low computational complexity, which can be adapted to extract the target area (i.e., the animal) and its background area according to the characteristics of the image pixels. Specifically, we first reconstruct a color space model via a CIELUV (LUV) color space framework to extract the color parameters. Next, according to the importance of the Hermite polynomial, a Hermite filter is utilized to extract the texture features, which ensures the accuracy of the split extraction of wildlife images. Then, an adaptive mean-shift algorithm is introduced to cluster texture features and color space information, realizing the extraction of the foreground area in the monitoring image. To verify the performance of the algorithm, a demonstration of the extraction of field-captured wildlife images is presented. Further, we conduct a comparative experiment with N-cuts (N-cuts), the existing aggregating super-pixels (SAS) algorithm, and the histogram contrast saliency detection (HCS) algorithm. A comparison of the results shows that the proposed algorithm for monitoring image target area extraction increased the average pixel accuracy by 11.25%, 5.46%, and 10.39%, respectively; improved the relative limit measurement accuracy by 1.83%, 5.28%, and 12.05%, respectively; and increased the average mean intersection over the union by 7.09%, 14.96%, and 19.14%, respectively.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3