Enhancing the Viscoelastic Performance of Carbon Fiber Composites by Incorporating CNTs and ZnO Nanofillers

Author:

Ayyagari SumaORCID,Al-Haik Marwan

Abstract

Carbon fiber reinforced plastic composites (CFRPs) possess superior elastic mechanical properties. However, CFRPs lack sufficient viscoelastic performance, such as damping and creep resistance. In an effort to improve these properties, in this study, hybrid multiscale composites with various combinations of zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs) were deposited at the interface of carbon fiber laminae. The viscoelastic properties of the corresponding composites were characterized via dynamic mechanical analysis (DMA) during both temperature and frequency sweeps. The creep activation energy for each composite configuration was also calculated. The DMA temperature sweep analysis reported that the composite incorporating both ZnO and CNTs exhibited the highest improvements in all viscoelastic properties. This composite also attained better creep resistance, evident by the highest activation energy. The DMA frequency sweep analysis revealed that composites incorporating a single nanofiller improves the viscoelastic properties more than the combined nanofiller composite. Despite these improvements in the viscoelastic properties, the non-uniform dispersion and agglomerations of the nanofillers affected some of the elastic properties negatively, such as the storage modulus.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3