Improving the Effect of Ferulic Acid on Inflammation and Insulin Resistance by Regulating the JNK/ERK and NF-κB Pathways in TNF-α-Treated 3T3-L1 Adipocytes

Author:

Park Jae-Eun1,Han Ji-Sook1ORCID

Affiliation:

1. Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

Abstract

In this study, ferulic acid was investigated for its potential in suppressing TNF-α-treated inflammation and insulin resistance in adipocytes. Ferulic acid suppressed TNF-α, IL-6, IL-1β, and MCP-1. TNF-α increased p-JNK and ERK1/2, but treatment with ferulic acid (1, 10, and 50 μM) decreased p-JNK and ERK1/2. TNF-α induced the activation of IKK, IκBα, and NF-κB p65 compared to the control, but ferulic acid inhibited the activation of IKK, IκBα, and NF-κB p65. Following treatment with TNF-α, pIRS-1ser307 increased and pIRS-1tyr612 decreased compared to the control. Conversely, as a result of treatment with 1, 10, and 50 μM ferulic acid, pIRS-1ser307 was suppressed, and pIRS-1tyr612 was increased. Therefore, ferulic acid reduced inflammatory cytokine secretion by regulating JNK, ERK, and NF-κB and improved insulin resistance by suppressing pIRS-1ser. These findings indicate that ferulic acid can improve inflammation and insulin resistance in adipocytes.

Funder

Pusan National University

Publisher

MDPI AG

Reference48 articles.

1. Obesity: Epidemiology, Pathophysiology, and Therapeutics;Lin;Front. Endocrinol.,2021

2. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease;Chait;Front. Cardiovasc. Med.,2020

3. Obesity: A Chronic Low-Grade Inflammation and Its Markers;Khanna;Cureus,2022

4. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance;Kojta;Nutrients,2020

5. Adipose tissue inflammation and metabolic dysfunction in obesity;Kawai;Am. J. Physiol. Cell Physiol.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3