Sucrose-Enriched and Carbohydrate-Free High-Fat Diets Distinctly Affect Substrate Metabolism in Oxidative and Glycolytic Muscles of Rats

Author:

Da Eira Daniel1,Jani Shailee1,Stefanovic Mateja1,Ceddia Rolando B.1

Affiliation:

1. Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada

Abstract

Skeletal muscle substrate preference for fuel is largely influenced by dietary macronutrient availability. The abundance of dietary carbohydrates promotes the utilization of glucose as a substrate for energy production, whereas an abundant dietary fat supply elevates rates of fatty acid (FA) oxidation. The objective of this study was to determine whether an obesogenic, high-fat, sucrose-enriched (HFS) diet or a carbohydrate-free ketogenic diet (KD) exert distinct effects on fat, glucose, and ketone metabolism in oxidative and glycolytic skeletal muscles. Male Wistar rats were fed either a HFS diet or a KD for 16 weeks. Subsequently, the soleus (Sol), extensor digitorum longus (EDL), and epitrochlearis (Epit) muscles were extracted to measure palmitate oxidation, insulin-stimulated glucose metabolism, and markers of mitochondrial biogenesis, ketolytic capacity, and cataplerotic and anaplerotic machinery. Sol, EDL, and Epit muscles from KD-fed rats preserved their ability to elevate glycogen synthesis and lactate production in response to insulin, whereas all muscles from rats fed with the HFS diet displayed blunted responses to insulin. The maintenance of metabolic flexibility with the KD was accompanied by muscle-fiber-type-specific adaptive responses. This was characterized by the Sol muscle in KD-fed rats enhancing mitochondrial biogenesis and ketolytic capacity without elevating its rates of FA oxidation in comparison with that in HFS feeding. Conversely, in the Epit muscle, rates of FA oxidation were increased, whereas the ketolytic capacity was markedly reduced by the KD in comparison with that by HFS feeding. In the EDL muscle, the KD also increased rates of FA oxidation, although it did so without altering its ketolytic capacity when compared to HFS feeding. In conclusion, even though obesogenic and ketogenic diets have elevated contents of fat and alter whole-body substrate partitioning, these two dietary interventions are associated with opposite outcomes with respect to skeletal muscle metabolic flexibility.

Funder

Discovery Grant from the Natural Science and Engineering Research Council of Canada

Canada Foundation for Innovation

Ontario Research Fund

NSERC Alexander Graham Bell Canada Graduate Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3