Tribological Behaviour of Hypereutectic Al-Si Composites: A Multi-Response Optimisation Approach with ANN and Taguchi Grey Method

Author:

Miladinović Slavica1,Gajević Sandra1ORCID,Savić Slobodan1,Miletić Ivan1ORCID,Stojanović Blaža1ORCID,Vencl Aleksandar2ORCID

Affiliation:

1. University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia

2. University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade, Serbia

Abstract

An optimisation model for small datasets was applied to thixocasted/compocasted composites and hybrid composites with hypereutectic Al-18Si base alloys. Composites were produced with the addition of Al2O3 (36 µm/25 nm) or SiC (40 µm) particles. Based on the design of experiment, tribological tests were performed on the tribometer with block-on-disc contact geometry for normal loads of 100 and 200 N, a sliding speed of 0.5 m/s, and a sliding distance of 1000 m. For the prediction of the tribological behaviour of composites, artificial neural networks (ANNs) were used. Three inputs were considered for ANN training: type of reinforcement (base alloy, Al2O3 and SiC), amount of Al2O3 nano-reinforcement (0 and 0.5 wt.%), and load (100 and 200 N). Various ANNs were applied, and the best ANN for wear rate (WR), with an overall regression coefficient of 0.99484, was a network with architecture 3-15-1 and a logsig (logarithmic sigmoid) transfer function. For coefficient of friction (CoF), the best ANN was the one with architecture 3-6-1 and a tansig (hyperbolic tangent sigmoid) transfer function and had an overall regression coefficient of 0.93096. To investigate the potential of ANN for the prediction of two outputs simultaneously, an ANN was trained, and the best results were from network 3-5-2 with a logsig transfer function and overall regression coefficient of 0.99776, but the predicted values for CoF in this case did not show good correlation with experimental results. After the selection of the best ANNs, the Taguchi grey multi-response optimisation of WR and CoF was performed for the same combination of factors as the ANNs. For optimal WR and CoF, the combination of factors was as follows: composite with 3 wt.% Al2O3 micro-reinforcement, 0.5 wt.% Al2O3 nano-reinforcement, and a load of 100 N. The results show that developed ANN, the Taguchi method, and the Taguchi grey method can, with high reliability, be used for the optimisation of wear rate and coefficient of friction of hypereutectic Al-Si composites. Microstructural investigations of worn surfaces were performed, and the wear mechanism for all tested materials was light abrasion and adhesion. The findings from this research can contribute to the future development of hypereutectic Al-Si composites.

Publisher

MDPI AG

Reference65 articles.

1. Joseph, R. (2001). Alloying: Understanding the Basics, ASM International.

2. Hypereutectic Al-Si Alloys: Practical Casting Considerations;Jorstad;Int. J. Met.,2009

3. Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys: Phase-Field Simulation Supported by Key Experiments;Wang;Metall. Mater. Trans. A,2016

4. Hypereutectic Aluminum Alloys and Composites: A Review;Vencl;Silicon,2023

5. Bleck, W., Dziallach, S., Meuser, H., Püttgen, W., and Uggowitzer, P.J. (2009). Thixoforming: Semi-solid Metal Processing, Wiley.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3