Coarse-Grained Molecular Dynamics Simulations of Organic Friction Modifier Adsorption on Rough Surfaces under Shear

Author:

Tang Jiahao1,Chong William Woei Fong23ORCID,Zhang Hedong1ORCID

Affiliation:

1. Department of Complex System Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

2. Faculty of Mechanical Engineering, University Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia

3. Future Value Creation Research Center (FV-CRC), Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Abstract

Reducing friction energy losses is crucial in mechanical systems, often achieved through lubrication strategies employing friction modifiers. These additives adsorb onto surfaces, forming boundary film to prevent solid–solid contacts. However, atomistic simulation techniques used to study these additives often ignore surface roughness due to high computational cost. This study addresses this gap by employing Coarse-Grained Molecular Dynamics (CG MD) to investigate the impact of surface roughness on the adsorption of Organic Friction Modifiers (OFMs) under shear. Traditional self-diffusion methods prove inadequate for determining the damping coefficients in CG models because of strong OFM adsorption effects. Therefore, shear-induced motion is introduced for the coefficient determination. The simulation reveals that a symmetrical model (identical opposing surfaces) shows OFM slip, desorption, and re-adsorption trends on rough surfaces, while an asymmetrical model (smooth cylinder on a flat surface) demonstrates increased adsorption on rough flat surfaces (up to 60.9%) compared to smooth flat surfaces under similar shearing conditions. However, rough flat surfaces with a smaller wavelength (6 nm) exhibit faster OFM desorption along the asperity region, up to four times more than a 24 nm wavelength surface. This research emphasizes the importance of considering surface roughness in simulating OFM behavior for lubrication applications.

Funder

JSPS KAKENHI Grants

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3