Abstract
The rheological properties of synovial fluid (SF) are essential for the friction behavior and wear performance of total joint replacements. Standardized in vitro wear tests for endoprosthesis recommend diluted calf serum, which exhibits substantial different rheological properties compared to SF. Therefore, the in vitro test conditions do not mimic the in vivo conditions. SF samples from osteoarthritis knee patients and patients undergoing knee endoprosthesis revision surgery were compared biochemically and rheologically. The flow properties of SF samples were compared to synthetic fluid constituents, such as bovine serum albumin (BSA) and hyaluronic acid (HA). Interestingly, HA was identified as a significant contributor to shear-thinning. Using the acquired data and mathematical modelling, the flow behavior of human SF was modelled reliably by an adapted adjustment of biorelevant fluid components. Friction tests in a hard/soft bearing (ceramic/UHMWPE) demonstrated that, in contrast to serum, the synthetic model fluids generate a more realistic friction condition. The developed model for an SF mimicking lubricant is recommended for in vitro wear tests of endoprostheses. Furthermore, the results highlight that simulator tests should be performed with a modified lubricant considering an addition of HA for clinically relevant lubrication conditions.
Funder
European Structural and Investment Funds
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献