Effect of Nano-CuO and 2-Mercaptobenzothiazole on the Tribological Properties of Ultra-High Molecular Weight Polyethylene

Author:

Vasilev Andrey P.1ORCID,Dyakonov Afanasiy A.12,Danilova Sakhayana N.1ORCID,Makarov Igor S.1,Okoneshnikova Anastasia V.1,Okhlopkova Aitalina A.1

Affiliation:

1. Department of Chemistry, Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia

2. V. P. Larionov Institute of Physical and Technical Problems of the North SB RAS, 677000 Yakutsk, Russia

Abstract

In this study, the tribological properties of nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) filled with nano-CuO and 2-mercaptobenzothiazole (CuO/MBT) in mass ratios of 1:1 and 2:1 were investigated. In the supramolecular structure of UHMWPE nanocomposites, spherulites of several hundred micrometers in size are formed. The density of UHMWPE nanocomposites slightly increases relative to the pure polymer, reaching a maximum at 2 wt.% CuO/MBT in both ratios. The Shore D hardness and compressive stress of the UHMWPE nanocomposites showed an improvement of 5–6% and 23–35%, respectively. The wear resistance and coefficient of friction of UHMWPE nanocomposites were tested using a pin-on-disk configuration under dry friction conditions on #45 steel and on P320 sandpaper. It was shown that the wear rate of UHMWPE nanocomposites filled with 2 wt.% CuO/MBT decreased by ~3.2 times compared to the pure polymer, and the coefficient of friction remained at the level of the polymer matrix. Abrasive wear showed an improvement in UHMWPE nanocomposites filled with 1 wt.% CuO/MBT compared to the polymer matrix and other samples. The worn surfaces of the polymer composites after dry friction were examined by scanning electron microscopy and IR spectroscopy. The formation of secondary structures in the form of tribofilms that protect the material from wear was demonstrated. Due to this, the wear mechanism of UHMWPE nanocomposites is transformed from adhesive to fatigue wear. The developed materials, due to improved mechanical and tribological properties, can be used as parts in friction units of machines and equipment.

Funder

Russian Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3