Cold-Flow Properties of Estolides: The Older (D97 and D2500) versus the Mini-(D5773 and D5949) Methods

Author:

Bantchev Grigor B.1ORCID,Ngo Helen2ORCID,Chen Yunzhi1ORCID,Winfield DeMichael D.1ORCID,Cermak Steven C.1ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bio-Oils Research Unit, Peoria, IL 61604, USA

2. United States Department of Agriculture, Agricultural Research Service, Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Wyndmoor, PA 19038, USA

Abstract

There is growing research on developing new and sustainable lubricants. Sustainable lubricants with adequate cold-flow properties are of particular interest for many applications. One limitation of the established methods for measuring cold flow properties is the large volume needed to test samples. This makes initial screening of many hard-to-synthesize samples difficult. In the current study, we compared the results of the older, widely accepted ASTM methods D97 (pour point, PP) and D2500 (cloud point, CP) to the newer, smaller-volume, and easier-to-perform methods D5949 and D5773 for bio-based base oils (estolides and iso-estolides). The CP results were in good agreement for less colored samples, but D5773 gave lower values for some darker (Gardner color >8) samples, especially esters. The D5949 showed a tendency to report slightly higher PP, especially for the lower values. Viscosities and densities in a wide temperature range (15 to 120 °C) were also measured. The surface tensions were estimated by a literature group method. Viscosity and density effects can only partially explain the differences in the PP values from the two methods. In conclusion, the newer mini-methods are an acceptable substitution when larger volumes are not accessible, unless the sample is too dark.

Funder

Agricultural Research Service of the United States Department of Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3