Research on the Preparation of Zirconia Coating on Titanium Alloy Surface and Its Tribological Properties

Author:

Zhao Qiancheng1,Wang Li2,Hu Tianchang1,Song Junjie1,Su Yunfeng1,Hu Litian1ORCID

Affiliation:

1. Lanzhou Institute of Chemical Physics, Chinese Academic of Sciences, Lanzhou 730000, China

2. Hangzhou Xiolift Company Limited, Hangzhou 311103, China

Abstract

Titanium alloys have been widely used in aerospace and other fields due to their excellent properties such as light weight and high strength. However, the extremely poor tribological properties of titanium alloys limit their applications in certain special working conditions. In order to improve the tribological properties of titanium alloys, the zirconia coatings were prepared on the surface of a TC4 titanium alloy using the discharge plasma sintering method in this article. The influence of sintering parameters on properties such as density, adhesion, hardness, and phase composition, as well as tribological properties (friction coefficient, wear rate) were investigated, and the influence mechanism of the coating structure on its mechanical and frictional properties was analyzed. The results showed that, with the increase in sintering temperature, the density, bonding strength, and hardness of the zirconia coating were significantly improved. The zirconia coating prepared at a sintering temperature of 1500 °C and a sintering time of 20 min had the lowest friction coefficient and wear rate, which are 0.33 and 6.2 × 10−8 cm3·N−1·m−1, respectively. Numerical analysis showed that the increase in temperature and the extension of time contributed to the extension of the diffusion distance between zirconia and titanium, thereby improving the interfacial adhesion. The influence mechanism of different sintering temperatures and sintering times on the wear performance of zirconia coatings was explained through Hertz contact theory.

Funder

Key Science and Technology Program of Gansu Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3