Antibacterial TaC-(Fe,Cr,Mo,Ni)-(Ag/Cu) Composite Coatings with High Wear and Corrosion Resistance in Artificial Seawater

Author:

Antonyuk Mariya N.,Kuptsov Konstantin A.ORCID,Sheveyko Alexander N.,Shtansky Dmitry V.ORCID

Abstract

The synergistic effect of simultaneous mechanical wear, chemical/electrochemical corrosion (tribocorrosion) and microbial attack poses a serious threat to marine and coastal infrastructure. To address this important problem, we have developed composite coatings consisting of TaC (25–35 at.%) and a corrosion-resistant α-Fe(Cr,Ni,Mo)-based metal matrix, as well as bactericidal elements (Cu, Ag). Coatings 50–75 μm thick were obtained by electrospark deposition in vacuum. The coatings possess high hardness (up to 10 GPa) and resistance to cyclic dynamic loads compared with the stainless steel (SS) substrate. Tribocorrosion experiments showed that the decrease in the corrosion potential associated with the removal of a passivating film from the surface during friction was 2–2.5 times smaller for the Ag-containing coating than for the other tested materials. The material passivation rates were also different: almost instantaneous passivation of the Ag- and Cu-doped coatings, and slow passivation for several minutes of the Ag/Cu-free coating and SS. The Ag-containing coating shows the lowest friction coefficient (0.2–0.25) and a minimal wear rate (1.6 × 10−6 mm3/Nm) in artificial seawater. The Ag-doped coating also exhibits the most positive value of corrosion potential and the lowest current density. After exposure in seawater for 20 days, only the Ag-doped coating showed no signs of pitting corrosion. All the studied materials have a pronounced bactericidal effect against Bacillus cereus Arc30 bacteria. The resulting coatings can be used to protect steel products from tribocorrosion and fouling in seawater.

Funder

RFBR

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3