Lubrication Performance and Mechanism of Electrostatically Charged Alcohol Aqueous Solvents with Aluminum–Steel Contact

Author:

Hu Xiaodong,Wang Ying,Tang Hongmei,Xia Yu,Huang ShuiquanORCID,Xu Xuefeng,Zhang Ruochong

Abstract

Alcohol aqueous solvents were prepared by individually adding n-propanol, isopropanol, 1,2-propanediol, and glycerol to deionized water for use as lubricants for the electrostatic minimum quantity lubrication (EMQL) machining of aluminum alloys. The tribological characteristics of those formulated alcohol solvents under EMQL were assessed using a four-ball configuration with an aluminum–steel contact, and their static chemisorption on the aluminum surfaces was investigated. It was found that the negatively charged alcohol lubricants (with charging voltages of −5 kV) resulted in 31% and 15% reductions in the coefficient of friction (COF) and wear scar diameter (WSD), respectively, in comparison with those generated using neutral alcohol lubricants. During the EMQL, static charges could help dissociate the alcohol molecules, generating more negative ions, which accelerated the chemisorption of those alcohol molecules on the aluminum surfaces and thereby yielded a relatively homogeneous-reacted film consisting of more carbon and oxygen. This lubricating film improved the interfacial lubrication, thus producing a better tribological performance for the aluminum alloys. The results achieved from this study will offer a new way to develop high-performance lubrication technologies for machining aluminum alloys.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Hebei Province

Hebei Provincial Research Foundation for Returned Scholars

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Mechanochemical Effect on Deformation Behavior of Aluminum Cutting Layer Under Electrostatic Catalysis;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-08-05

2. State-of-the-art on minimum quantity lubrication in green machining;Journal of Cleaner Production;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3