Nanocrystallized Surface Effect on the Tribocorrosion Behavior of AISI 420

Author:

Ben Saada Fatma,Ben Saada MariemORCID,Elleuch KhaledORCID,Ponthiaux Pierre

Abstract

Nanopeening treatment was applied to the AISI 420 steel to decrease its sensitivity to tribocorrosion damage. The microstructural investigation highlighted that the nanopeening treatment led to high plastic deformation and a nanostructured surface layer with a 110 µm depth. In order to study the combined effect of corrosion and mechanical wear, tribocorrosion tests were performed on non-treated and nanopeened samples in boric acid and lithium hydroxide solutions, considering both continuous and intermittent sliding. It was found that the AISI 420 steel is sensitive to the synergy between mechanical friction and electrochemical corrosion with the dominance of abrasive wear. Adhesive wear was also detected in the wear track. Indeed, the mechanical wear was pronounced under intermittent sliding because of hard wear debris generation from the repassivated layer during rotating time. The nanopeening treatment led to enhanced mechanical performance and corrosion properties. Such improvement could be explained by the high plastic deformation resulting in the nano-structuration of grains and the increasing hardness of AISI 420 steel.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3