Characterization of Base Oil and Additive Oxidation Products from Formulated Lubricant by Ultra-High Resolution Mass Spectrometry

Author:

Lacroix-Andrivet Oscar123ORCID,Hubert-Roux Marie23,Loutelier Bourhis Corinne2,Moualdi Samira1,Mendes Siqueira Anna Luiza12,Afonso Carlos23ORCID

Affiliation:

1. TotalEnergies OneTech R&D, Centre de Recherche de Solaize (CRES), Chemin Du Canal, BP 22, 69360 Solaize, France

2. INSA Rouen Normandie, CNRS, University Rouen Normandie, Normandie University, COBRA UMR 6014, INC3M FR 3038, 76000 Rouen, France

3. International Joint Laboratory—iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700 Harfleur, France

Abstract

Automotive formulated lubricants are high value products composed of 80% base oil and 20% various additives. During their life service, lubricants are exposed to several factors that will cause degradation over time, such as high temperature, shear, and oxidation. Base oil is a complex combination of hydrocarbons that are relatively sensitive to oxidation. During the initiation phase of oxidation, free radicals are formed, leading to the production of hydroperoxide ROOH and an alkyl radical R•. These compounds will react with the base oil molecules to form aldehydes, ketones, and carboxylic acids in the termination phase. Owing to the molecular complexity of these mixtures, Fourier transform mass spectrometry seems to be the most appropriate tool to cover their wide range of compounds due to its ultra-high resolving power and mass accuracy. In this study, a native formulated lubricant and its different oxidized states at 140 °C under air flow (3, 5, 7, 8, and 9 days of oxidation) were analyzed by FTICR MS. The combination of atmospheric pressure chemical ionization (APCI) was used to achieve a non-selective ionization of molecules, including base oils, while Electrospray ionization (ESI) was used to selectively ionize acidic molecules. Apparent Kendrick mass defect (aKMD) plots were used to separate homologous series of molecules on different horizontal lines on the basis of the CH2 repetition unit. Aging of lubricants was mainly characterized by a rapid consumption of certain additive families, such as molybdenum dithiocarbamates (MoDTCs) and zinc dithiophosphate (ZnDTPs), but also by the emergence of many oxidation products. Thus, the presence of aldehydes, ketones, and acids was characterized in the early stage of aging while larger products from polymerization were observed in a more advanced stage of aging. Interaction products between peroxy radicals and hindered phenols/alkyl diphenylamines (ADPAs) antioxidations were elucidated toward the high m/z. The formation of such products can be explained by trapping mechanisms of these additives at high temperature (>120 °C). Other types of interaction products were observed with the formation of antioxidant complexes. Additive degradation products were also characterized. For instance, polyisobutenyl succinimide dispersant oxidation products were clearly evidenced on the aKMD plots due to the gaps of 56 Da between each point. Overall, this study demonstrated the efficiency of the aKMD approach, and the use of ESI/APCI to characterize base oil and additive oxidation products.

Funder

TotalEnergies OneTech R&D, Centre de Recherche de Solaize

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3